Publication:
Enhanced robustness of convolutional networks with a push-pull inhibition layer

dc.contributor.authorStrisciuglio, Nicola
dc.contributor.authorLopez-Antequera, Manuel
dc.contributor.authorPetkov, Nicolai
dc.contributor.authoraffiliation[Strisciuglio, Nicola] Univ Groningen, Bernoulli Inst Math Comp Sci & Artificial Intelli, Groningen, Netherlands
dc.contributor.authoraffiliation[Lopez-Antequera, Manuel] Univ Groningen, Bernoulli Inst Math Comp Sci & Artificial Intelli, Groningen, Netherlands
dc.contributor.authoraffiliation[Petkov, Nicolai] Univ Groningen, Bernoulli Inst Math Comp Sci & Artificial Intelli, Groningen, Netherlands
dc.contributor.authoraffiliation[Strisciuglio, Nicola] Univ Twente, Fac Elect Engn Math & Comp Sci, Enschede, Netherlands
dc.contributor.authoraffiliation[Lopez-Antequera, Manuel] Univ Malaga, MAPIR Grp, Biomed Res Inst Malaga IBIMA, Malaga, Spain
dc.contributor.funderEuropean Commission
dc.date.accessioned2023-02-12T02:20:24Z
dc.date.available2023-02-12T02:20:24Z
dc.date.issued2020-01-23
dc.description.abstractConvolutional neural networks (CNNs) lack robustness to test image corruptions that are not seen during training. In this paper, we propose a new layer for CNNs that increases their robustness to several types of corruptions of the input images. We call it a 'push-pull' layer and compute its response as the combination of two half-wave rectified convolutions, with kernels of different size and opposite polarity. Its implementation is based on a biologically motivated model of certain neurons in the visual system that exhibit response suppression, known as push-pull inhibition. We validate our method by replacing the first convolutional layer of the LeNet, ResNet and DenseNet architectures with our push-pull layer. We train the networks on original training images from the MNIST and CIFAR data sets and test them on images with several corruptions, of different types and severities, that are unseen by the training process. We experiment with various configurations of the ResNet and DenseNet models on a benchmark test set with typical image corruptions constructed on the CIFAR test images. We demonstrate that our push-pull layer contributes to a considerable improvement in robustness of classification of corrupted images, while maintaining state-of-the-art performance on the original image classification task. We released the code and trained models at the url http://github.com/nicstrisc/Push-Pull-CNN-layer.
dc.description.sponsorshipThis study was partially funded by the European Commission H2020 program under project TrimBot2020 (Grant Number 688007).
dc.description.version
dc.identifier.citationStrisciuglio N, Lopez-Antequera M, Petkov N. Enhanced robustness of convolutional networks with a push–pull inhibition layer. Neural Comput Appl. 2020;32:17957–17971
dc.identifier.doi10.1007/s00521-020-04751-8
dc.identifier.doihttps://doi.org/10.1007/s00521-020-04751-8
dc.identifier.essn1433-3058
dc.identifier.issn0941-0643
dc.identifier.unpaywallURLhttps://link.springer.com/content/pdf/10.1007/s00521-020-04751-8.pdf
dc.identifier.urihttp://hdl.handle.net/10668/18637
dc.identifier.wosID515906500001
dc.issue.number24
dc.journal.titleNeural computing & applications
dc.journal.titleabbreviationNeural comput. appl.
dc.language.isoen
dc.organizationInstituto de Investigación Biomédica de Málaga-IBIMA
dc.page.number15
dc.provenanceRealizada la curación de contenido 26/09/2024
dc.publisherSpringer london ltd
dc.relation.publisherversionhttps://doi.org/10.1007/s00521-020-04751-8
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectConvolutional neural networks
dc.subjectImage corruption
dc.subjectNetwork robustness
dc.subjectNeuron response inhibition
dc.subjectpush-pull layer
dc.subjectOrientation selectivity
dc.subjectReceptive-fields
dc.subjectSimple cell
dc.subjectSuppression
dc.subjectBroad
dc.subjectModel
dc.subject.decsBenchmarking
dc.subject.decsMentoring
dc.subject.decsMethods
dc.subject.decsNeurons
dc.subject.decsTidal Waves
dc.subject.meshBenchmarking
dc.subject.meshNeural Networks, Computer
dc.subject.meshInhibition, Psychological
dc.subject.meshAlgorithms
dc.titleEnhanced robustness of convolutional networks with a push-pull inhibition layer
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number32
dc.wostypeArticle
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Strisciuglio_Enhanced.pdf
Size:
2.41 MB
Format:
Adobe Portable Document Format