Publication:
Validation of suitable normalizers for miR expression patterns analysis covering tumour heterogeneity.

dc.contributor.authorMorata-Tarifa, C
dc.contributor.authorPicon-Ruiz, M
dc.contributor.authorGriñan-Lison, C
dc.contributor.authorBoulaiz, H
dc.contributor.authorPerán, M
dc.contributor.authorGarcia, M A
dc.contributor.authorMarchal, J A
dc.date.accessioned2023-01-25T09:42:50Z
dc.date.available2023-01-25T09:42:50Z
dc.date.issued2017-01-04
dc.description.abstractOncogenic microRNAs (miRs) have emerged as diagnostic biomarkers and novel molecular targets for anti-cancer drug therapies. Real-time quantitative PCR (qPCR) is one of the most powerful techniques for analyzing miRs; however, the use of unsuitable normalizers might bias the results. Tumour heterogeneity makes even more difficult the selection of an adequate endogenous normalizer control. Here, we have evaluated five potential referenced small RNAs (U6, rRNA5s, SNORD44, SNORD24 and hsa-miR-24c-3p) using RedFinder algorisms to perform a stability expression analysis in i) normal colon cells, ii) colon and breast cancer cell lines and iii) cancer stem-like cell subpopulations. We identified SNORD44 as a suitable housekeeping gene for qPCR analysis comparing normal and cancer cells. However, this small nucleolar RNA was not a useful normalizer for cancer stem-like cell subpopulations versus subpopulations without stemness properties. In addition, we show for the first time that hsa-miR-24c-3p is the most stable normalizer for comparing these two subpopulations. Also, we have identified by bioinformatic and qPCR analysis, different miR expression patterns in colon cancer versus non tumour cells using the previously selected suitable normalizers. Our results emphasize the importance of select suitable normalizers to ensure the robustness and reliability of qPCR data for analyzing miR expression.
dc.identifier.doi10.1038/srep39782
dc.identifier.essn2045-2322
dc.identifier.pmcPMC5209713
dc.identifier.pmid28051134
dc.identifier.pubmedURLhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5209713/pdf
dc.identifier.unpaywallURLhttps://www.nature.com/articles/srep39782.pdf
dc.identifier.urihttp://hdl.handle.net/10668/10737
dc.journal.titleScientific reports
dc.journal.titleabbreviationSci Rep
dc.language.isoen
dc.organizationHospital Universitario Virgen de las Nieves
dc.page.number39782
dc.pubmedtypeJournal Article
dc.pubmedtypeResearch Support, Non-U.S. Gov't
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.meshBiomarkers, Tumor
dc.subject.meshCell Line, Tumor
dc.subject.meshComputational Biology
dc.subject.meshGene Expression Regulation, Neoplastic
dc.subject.meshHumans
dc.subject.meshMicroRNAs
dc.subject.meshNeoplasms
dc.subject.meshReal-Time Polymerase Chain Reaction
dc.titleValidation of suitable normalizers for miR expression patterns analysis covering tumour heterogeneity.
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number7
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PMC5209713.pdf
Size:
769.77 KB
Format:
Adobe Portable Document Format