Publication:
Damage prediction via nonlinear ultrasound: A micro-mechanical approach.

dc.contributor.authorMelchor, J
dc.contributor.authorParnell, W J
dc.contributor.authorBochud, N
dc.contributor.authorPeralta, L
dc.contributor.authorRus, G
dc.contributor.funderSpanish Ministerio de Economía y Competitividad
dc.contributor.funderJunta de Andalucía
dc.contributor.funderUniversity of Manchester
dc.contributor.funderEngineering and Physical Science Research Council (EPSRC)
dc.date.accessioned2023-01-25T10:26:05Z
dc.date.available2023-01-25T10:26:05Z
dc.date.issued2018-10-20
dc.description.abstractNonlinear constitutive mechanical parameters, predominantly governed by micro-damage, interact with ultrasound to generate harmonics that are not present in the excitation. In principle, this phenomenon therefore permits early stage damage identification if these higher harmonics can be measured. To understand the underlying mechanism of harmonic generation, a nonlinear micro-mechanical approach is proposed here, that relates a distribution of clapping micro-cracks to the measurable macroscopic acoustic nonlinearity by representing the crack as an effective inclusion with Landau type nonlinearity at small strain. The clapping mechanism inside each micro-crack is represented by a Taylor expansion of the stress-strain constitutive law, whereby nonlinear terms arise. The micro-cracks are considered distributed in a macroscopic medium and the effective nonlinearity parameter associated with compression is determined via a nonlinear Mori-Tanaka homogenization theory. Relationships are thus obtained between the measurable acoustic nonlinearity and the Landau-type nonlinearity. The framework developed therefore yields links with nonlinear ultrasound, where the dependency of measurable acoustic nonlinearity is, under certain hypotheses, formally related to the density of micro-cracks and the bulk material properties.
dc.description.sponsorshipThe authors acknowledge the Spanish Ministerio de Economía y Competitividad for project DPI2014-51870-R and Junta de Andalucía for projects P11-CTS-8089 and GGI3000IDIB. Melchor is grateful to the University of Manchester for funding via the Engineering and Physical Science Research Council (EPSRC) grant reference EP/I01912X/1. Parnell is grateful to the EPSRC for his research fellowship (EP/ L018039/1).
dc.description.versionSi
dc.identifier.citationMelchor J, Parnell WJ, Bochud N, Peralta L, Rus G. Damage prediction via nonlinear ultrasound: A micro-mechanical approach. Ultrasonics. 2019 Mar;93:145-155
dc.identifier.doi10.1016/j.ultras.2018.10.009
dc.identifier.essn1874-9968
dc.identifier.pmid30529738
dc.identifier.unpaywallURLhttps://doi.org/10.1016/j.ultras.2018.10.009
dc.identifier.urihttp://hdl.handle.net/10668/13298
dc.journal.titleUltrasonics
dc.journal.titleabbreviationUltrasonics
dc.language.isoen
dc.organizationInstituto de Investigación Biosanitaria de Granada (ibs.GRANADA)
dc.page.number145-155
dc.publisherElsevier BV
dc.pubmedtypeJournal Article
dc.relation.projectIDP11-CTS-8089
dc.relation.projectIDGGI3000IDIB
dc.relation.projectIDDPI2014-51870-R
dc.relation.projectIDEP/ L018039/1
dc.relation.projectIDEP/I01912X/1
dc.relation.publisherversionhttps://linkinghub.elsevier.com/retrieve/pii/S0041-624X(18)30257-9
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectHomogenization
dc.subjectMicro-cracks
dc.subjectNon-destructive evaluation
dc.subjectNonlinear acoustics
dc.subjectNonlinear elasticity
dc.subjectUltrasound
dc.subject.decsDinámicas no lineales
dc.subject.decsUltrasonido
dc.subject.meshUltrasonics
dc.subject.meshNonlinear Dynamics
dc.titleDamage prediction via nonlinear ultrasound: A micro-mechanical approach.
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number93
dspace.entity.typePublication
project.funder.identifierEP/I01912X/1
project.funder.identifierEP/ L018039/1

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Melchor_Damage.pdf
Size:
672.18 KB
Format:
Adobe Portable Document Format