Publication:
Mixing body-parts model for 2D human pose estimation in stereo videos

dc.contributor.authorLopez-Quintero, Manuel I.
dc.contributor.authorMarin-Jimenez, Manuel J.
dc.contributor.authorMunoz-Salinas, Rafael
dc.contributor.authorMedina-Carnicer, Rafael
dc.contributor.authoraffiliation[Lopez-Quintero, Manuel I.] Univ Cordoba, Dept Comp & Numer Anal, Campus Rabanales, E-14071 Cordoba, Spain
dc.contributor.authoraffiliation[Marin-Jimenez, Manuel J.] Univ Cordoba, Dept Comp & Numer Anal, Campus Rabanales, E-14071 Cordoba, Spain
dc.contributor.authoraffiliation[Munoz-Salinas, Rafael] Univ Cordoba, Dept Comp & Numer Anal, Campus Rabanales, E-14071 Cordoba, Spain
dc.contributor.authoraffiliation[Medina-Carnicer, Rafael] Univ Cordoba, Dept Comp & Numer Anal, Campus Rabanales, E-14071 Cordoba, Spain
dc.contributor.authoraffiliation[Marin-Jimenez, Manuel J.] Univ Cordoba, Maimonides Inst Biomed Res IMIBIC, E-14004 Cordoba, Spain
dc.contributor.authoraffiliation[Munoz-Salinas, Rafael] Univ Cordoba, Maimonides Inst Biomed Res IMIBIC, E-14004 Cordoba, Spain
dc.contributor.authoraffiliation[Medina-Carnicer, Rafael] Univ Cordoba, Maimonides Inst Biomed Res IMIBIC, E-14004 Cordoba, Spain
dc.contributor.funderSpanish Ministry of Science and Technology
dc.contributor.funderSpanish Ministry of Economy, Industry and Competitiveness
dc.date.accessioned2023-02-12T02:21:17Z
dc.date.available2023-02-12T02:21:17Z
dc.date.issued2017-03-11
dc.description.abstractThis study targets 2D articulated human pose estimation (i.e. localisation of body limbs) in stereo videos. Although in recent years depth-based devices (e.g. Microsoft Kinect) have gained popularity, as they perform very well in controlled indoor environments (e.g. living rooms, operating theatres or gyms), they suffer clear problems in outdoor scenarios and, therefore, human pose estimation is still an interesting unsolved problem. The authors propose here a novel approach that is able to localise upper-body keypoints (i.e. shoulders, elbows, and wrists) in temporal sequences of stereo image pairs. The authors' method starts by locating and segmenting people in the image pairs by using disparity and appearance information. Then, a set of candidate body poses is computed for each view independently. Finally, temporal and stereo consistency is applied to estimate a final 2D pose. The authors' validate their model on three challenging datasets: stereo human pose estimation dataset', poses in the wild' and INRIA 3DMovie'. The experimental results show that the authors' model not only establishes new state-of-the-art results on stereo sequences, but also brings improvements in monocular sequences.
dc.identifier.citationLópez‐Quintero MI, Marín‐Jiménez MJ, Muñoz‐Salinas R, Medina‐Carnicer R. Mixing body‐parts model for 2D human pose estimation in stereo videos. IET Computer Vision [Internet]. 18 de julio de 2017;11(6):426-33
dc.identifier.doi10.1049/iet-cvi.2016.0249
dc.identifier.essn1751-9640
dc.identifier.issn1751-9632
dc.identifier.unpaywallURLhttp://helvia.uco.es/xmlui/bitstream/10396/19859/1/Mixing_Body_Parts_Model__IETCV_.pdf
dc.identifier.urihttp://hdl.handle.net/10668/18921
dc.identifier.wosID410005400006
dc.issue.number6
dc.journal.titleIet computer vision
dc.journal.titleabbreviationIet comput. vis.
dc.language.isoen
dc.organizationInstituto Maimónides de Investigación Biomédica de Córdoba-IMIBIC
dc.page.number426-433
dc.publisherWiley
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectStereo image processing
dc.subjectPose estimation
dc.subjectVideo signal processing
dc.subjectImage sensors
dc.subjectImage sequences
dc.subjectStereo videos
dc.subjectMixing body-parts model
dc.subject2D articulated human pose estimation
dc.subjectMicrosoft Kinect
dc.subjectControlled indoor environments
dc.subjectLocalise upper-body keypoints
dc.subjectTemporal sequences
dc.subjectStereo image pairs
dc.subjectBody poses
dc.subjectStereo consistency
dc.subjectTemporal consistency
dc.subjectStereo human pose estimation dataset
dc.subjectINRIA 3DMovie
dc.subjectMonocular sequences
dc.subjectStereo sequences
dc.subject.decsHumanos
dc.subject.decsMuñeca
dc.subject.decsImagenología Tridimensional
dc.subject.decsHumanos
dc.subject.decsEjercicio Fisico
dc.subject.decsAlgoritmos
dc.subject.meshHumans
dc.subject.meshShoulder
dc.subject.meshWrist
dc.subject.meshExercise
dc.subject.meshAlgorithms
dc.subject.meshImaging, Three-Dimensional
dc.titleMixing body-parts model for 2D human pose estimation in stereo videos
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number11
dc.wostypeArticle
dspace.entity.typePublication

Files